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Abstract. The local, covariant, continuous, anticommuting and nilpotent Becchi-Rouet—Stora—Tyutin
(BRST) and anti-BRST symmetry transformations for all the fields of a (0 + 1)-dimensional spinning
relativistic particle are obtained in the framework of the augmented superfield approach to the BRST
formalism. The trajectory of this super particle, parametrized by a monotonically increasing evolution
parameter 7, is embedded in a D-dimensional flat Minkowski spacetime manifold. This physically useful
1-dimensional system is considered on a three (1 + 2)-dimensional supermanifold which is parametrized by
an even element (7) and a couple of odd elements (§ and ) of the Grassmann algebra. Two anticommuting
sets of (anti-) BRST symmetry transformations, corresponding to the underlying (super) gauge symme-
tries for the above system, are derived in the framework of augmented superfield formulation where the
horizontality condition, and the invariance of conserved quantities on the (super) manifolds play decisive
roles. Geometrical interpretations for the above nilpotent symmetries (and their generators) are provided.

PACS. 11.15.-q, 12.20.-m, 3.70.+k

1 Introduction

For the covariant canonical quantization of gauge theo-
ries', one of the most elegant and intuitive approaches is
the Becchi-Rouet—Stora—Tyutin (BRST) formalism [1,2].
In this formalism, the unitarity and “quantum” gauge (i.e.
BRST) invariance are very naturally respected at any arbi-
trary order of perturbative computations for any arbitrary
physical process allowed by the interacting gauge theories
(where there exists self-interaction as well as the coupling
between the (non-) Abelian gauge field and the matter
fields). In fact, the whole strength of the BRST formalism
appears in its full blaze of glory in the context of an inter-
acting non-Abelian gauge theory where the (anti-) ghost
fields are required in the precise proof of unitarity. To be
more accurate, for every gluon loop (Feynman) diagram,
one requires a ghost loop diagram so that unitarity of the
theory could be maintained at any given order of pertur-
bative calculation (see, e.g., [3] for details). In a modern
context, the BRST formalism is indispensable in the realm
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! These theories are endowed with the first-class constraints
in the language of Dirac’s prescription for the classification of
constraints. The local (non-) Abelian 1-form interacting gauge
theories provide an almost exact theoretical basis for the three
(out of four) fundamental interactions of nature.

of topological field theories [4-6], topological string theo-
ries [7], string field theories [8], etc. There are well-known
connections of this formalism with the mathematics of dif-
ferential geometry and supersymmetries.

In our present endeavour, we shall be concentrating
on the geometrical aspects of the relationship between
the BRST formalism and the superfield formalism. To be
more elaborate on this topic, it should be noted that, in
the framework of the usual superfield formulation [9-14]
of the BRST approach to D-dimensional p-form (with
p = 1,2,...) Abelian gauge theories, the gauge theory
is considered first on a (D + 2)-dimensional supermani-
fold parametrized by the D-number of even (commuting)
spacetime x,, variables (with ¢ =0,1,2,...,D—1) and a
couple of odd (anticommuting) Grassmannian variables 6
and 0 (with 6% = 62 = 0,600 + 06 = 0). Then, the (p + 1)-
form super curvature F®+1) = dA® is constructed from
the super exterior derivative d = dx*0,, + df0y + d9_8§

(with d? = 0) and the super p-form connection A®) de-
fined on the (D + 2)-dimensional supermanifold. This is
subsequently equated, due to the so-called horizontality
condition [9-14], with the ordinary curvature (p + 1)-form
F®+1) — gA®) defined on the D-dimensional ordinary
spacetime manifold with the exterior derivative d = dz*0,
(with d> = 0) and the ordinary p-form connection A®).
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The above horizontality condition? is christened as the soul-
flatness condition in [15] which amounts to setting equal to
zero all the Grassmannian components of the (anti-) sym-
metric super curvature tensor that defines the (p+ 1)-form
super curvature.

The process of reduction of the (p+ 1)-form super cur-
vature to the ordinary (p + 1)-form curvature due to the
horizontality condition
(i) generates the nilpotent and anticommuting (anti-)
BRST transformations for only the gauge fields and the
(anti-) ghost fields,

(ii) provides the geometrical interpretation for the nilpo-
tent (anti-) BRST charges as the translational generators
(Limg_,((0/00)) Limg_,0(0/00) along the (6)0-directions
of the (D + 2)-dimensional supermanifold,

(iii) leads to the geometrical interpretation for the nilpo-
tency property as the two successive translations (i.e.
(0/06)* = (0/00)? = 0) along either of the Grassman-
nian directions, and

(iv) captures the anticommutativity of the nilpotent (anti-)
BRST charges (and the transformations they generate)
in the relationship (9/90)(0/06) + (0/00)(0/00) = 0. It
should be re-emphasized, however, that all these nice ge-
ometrical connections between the BRST formalism and
the usual superfield formalism [9-14] are confined only to
the gauge fields and the (anti-) ghost fields of a BRST
invariant Lagrangian density of the D-dimensional inter-
acting p-form Abelian gauge theory. The matter fields of
an interacting D-dimensional p-form Abelian gauge the-
ory remain untouched in the above superfield formalism
as far as their nilpotent and anticommuting (anti-) BRST
symmetry transformations are concerned.

The above constraint due to the horizontality condi-
tion (where only d and d play important roles) has been
generalized to the constraints that emerge from the full
use of super (d, 8, A) and ordinary (d,d, A) de Rham co-
homological operators (see, e.g., [16-20] for details). This
complete set of restrictions on the (super) manifolds leads
to the existence of (anti-) BRST, (anti-) co-BRST and a
bosonic (which is equal to the anticommutator of the (anti-)
BRST and the (anti-) co-BRST) symmetry transforma-
tions together for the (1 + 1)-dimensional non-interacting
1-form (non-) Abelian gauge theories. In the Lagrangian
formulation, the above kind of symmetries have also been
shown to exist for the (3 + 1)-dimensional free Abelian
2-form gauge theory [21,22]. There exists a discrete sym-
metry transformation for the above field theoretical models
(in the Lagrangian formulation) which corresponds to the
Hodge duality % operation of differential geometry. Thus,
the above models do provide a tractable set of field theo-
retical examples for the Hodge theory. It is worthwhile to
pinpoint, however, that even the above new attempts of

2 For the 1-form non-Abelian gauge theory, the horizontality
condition F® = F<2>, where 2-form super curvature F® =
dAD 1+ AW A AM and 2-form ordinary curvature F® = gAM4
AM A AW leads to the exact derivation of the nilpotent and
anticommuting (anti-) BRST symmetry transformations for the
non-Abelian gauge field and the corresponding (anti-) ghost
fields of the theory (see, e.g. [12] for details).
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the superfield formalism (with the full set of cohomological
operators) do not shed any light on the nilpotent symmetry
transformations associated with the matter fields.

In a set of recent papers [23-27], the above usual su-
perfield formalism (with the theoretical arsenal of hori-
zontality condition and its generalizations) has been aug-
mented to include the invariance of the conserved currents
and/or charges on the (super) manifolds. The latter con-
straints, on the (super) manifolds, lead to the derivation of
the nilpotent (anti-) BRST symmetry transformations for
the matter fields of the interacting 4-dimensional 1-form
(non-) Abelian gauge theories. We christen this extended
version of the superfield formalism as augmented super-
field formulation applied to the 4-dimensional interacting
1-form gauge theory described by the (anti-) BRST invari-
ant Lagrangian density. It is worth emphasizing that, in
the framework of augmented superfield formalism, all the
geometrical interpretations, listed in the previous para-
graph, remain intact. As a consequence, there is a very
nice mutual complementarity between the old constraint
(i.e. the horizontality condition) and new constraint(s) on
the (super) manifolds. We do obtain, as a bonus and by-
product, all the nilpotent (anti-) BRST transformations
for all the fields (i.e. gauge fields, (anti-) ghost fields and
matter fields) of an interacting 1-form gauge theory.

The purpose of the present paper is to derive the nilpo-
tent (anti-) BRST transformations for all the fields, present
in the description of a free spinning relativistic particle
(moving on a super world-line) in the framework of the
augmented superfield formulation [23-27]. Our present en-
deavour is essential primarily on four counts:

First and foremost, this formalism is being applied to
a supersymmetric system for the first time. It is worth
pointing out that its non-supersymmetric counterpart (i.e.
the system of a free scalar relativistic particle) has already
been discussed in the framework of the augmented super-
field formulation in our earlier work [27].

Second, to check the mutual consistency and comple-
mentarity between
(i) the horizontality condition, and
(ii) the invariance of conserved quantities on the (super)
manifolds for this physical system. These were found to be
true in the cases of
(a) a free scalar relativistic particle [27],

b) the interacting (non-) Abelian gauge theories in two
1+ 1)-dimensions (2D) [23,24],

iii) the interacting (non-) Abelian gauge theories in four
3 + 1)-dimensions (4D) of spacetime [25,26].

Third, to generalize our earlier works [23-27], which
were connected only with the gauge symmetries and
reparametrization symmetries, to the case where the su-
pergauge symmetry also exists for the present system un-
der discussion.

Finally, to tap the potential and power of the above
restrictions in the derivation of the nilpotent symmetries
for the case of a new system where the fermionic as well
as bosonic
(i) gauge fields (i.e. x,e), and

(
(
(
(
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(ii) (anti-) ghost fields (i.e. (¢)c) and (8)5 ) do exist in the
Lagrangian description of this supersymmetric system (cf.
(2.7) below).

The contents of our present paper are organized as
follows. In Sect.2, we very clearly discuss the essentials
of the reparametrization, gauge and supergauge symme-
try transformations for the spinning massive relativistic
particle in the Lagrangian formulation. Two sets of anti-
commuting BRST symmetry transformations, that exist
for the above system under a very specific limit, are also
discussed in this section. Sections 3 and 4 are the central
parts of our paper. Section 3 is devoted to the derivation
of the nilpotent (anti-) BRST symmetry transformations
(corresponding to the gauge symmetry transformations) in
the framework of the augmented superfield formalism. In
the forthcoming section (i.e. Sect.4), for the first time, we
extend the idea of the augmented superfield formalism to
obtain the (anti-) BRST symmetry transformations (cor-
responding to the supergauge symmetry transformations)
that exist for the spinning relativistic particle. Finally, in
Sect. 5, we make some concluding remarks and point out
a few future directions for further investigations.

2 Preliminary: nilpotent BRST symmetries

Let us begin with the various equivalent forms of the
reparametrization invariant Lagrangians for the descrip-
tion of a free massive spinning relativistic particle moving
on a super world-line that is embedded in a D-dimensional
flat Minkowski target spacetime manifold. These, triplets
of appropriate Lagrangians, are [28,29]:

L5 = G+ ix) 12 + 5 (u — sils)

_iX¢5ma
m 1 i ~
LE ) = p;tx# - 56 (p2 - mQ) + % (%ﬂﬁ” - ¢5¢5)

+ix (Wp” - "/’5m) ,

1 1
L™ = 3¢ (@t ixv.)’ + Zem’

i . ) )
+3 (%ﬂ/’“ - ¢5¢5) —ixysm. (2.1)
In the above, the mass-shell condition p? — m? = 0, the
constraint condition p - ¢ — mws = 0 and the force free
(i.e. p, = 0) motion of the spinning relativistic particle
are some of the key common features for

(i) the Lagrangian with the square root L(()m),

(m)

(ii) the first-order Lagrangian L; "/, and

(iii) the second-order Lagrangian L{™ . The constraints

p?—m?~0and p-y —mis ~ 0 in Lgm) are taken care
of by the Lagrange multiplier fields e(7) and x(7) (with
x? = 0) which are

(a) the bosonic and fermionic gauge fields of the present
system, respectively, and
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(b) the analogues of the vierbein and Rarita—Schwinger
(gravitino) fields in the language of the supergravity the-
ories. The Lorentz vector fermionic fields v, (7) (with
w=0,1,2,...,D — 1) are the superpartner of the target
space coordinate variable z, (1) (withp = 0,1,2,...,D—1)
and classically they present spin degrees of freedom. Fur-
thermore, they anticommute with themselves (i.e. 1,9, +
¥, 1p, = 0) and other fermionic field variables (i.e. 1,15 +
Y5, = 0,9, x + x¥, = 0) of the system under consid-
eration. The 7-independent mass parameter m (i.e. the
analogue of the cosmological constant term) is introduced
in our present system through the anticommuting (i.e.
Psx+xs = 0, (5)% = —1, etc.) Lorentz scalar field 15 (7).
The momentap, (1) (with 4 = 0,1,2,..., D—1), present in
Lgm), are canonically conjugate to the target space coordi-
nate variable z# (7). It is evident that, except for the mass
parameter m, the rest of the field variables are the func-
tions of monotonically increasing parameter 7 that charac-
terizes the trajectory (i.e. the super world-line) of the mas-
sive spinning relativistic particle. Here &# = (dz*/dr) =
ep! —ix¥, by = (dip,/dr) = xpu, s = (dis/dr) = xm
are the generalized versions of “velocities” of the massive
spinning relativistic particle.

In what follows, we shall focus on the first-order La-

grangian Lgm) for the discussion of the symmetry prop-

erties of the system. This is due to the fact that this La-
grangian is comparatively simpler in the sense that there
are no square roots and there are no field variables in the
denominator. Furthermore, it is endowed with the maxi-
mum number of field variables and, therefore, is interesting
from the point of view of theoretical discussions. Under an
infinitesimal version of the reparametrization transforma-
tions 7 — 7/ = 7 — €(7), where €(7) is an infinitesimal

(m)

parameter, the field variables of L;" transform as

Ory = €ty OrPp = Py, othy = €, (2.2)
. d d
Ort)s = €5,  Opx = P (ex), dre= P (ee).

It should be noted that

(i) 0, 2(1) = X'(1) — X(7) for the generic field variable
2= Ly Pus €, ¢;M ¢57 X5 and

(ii) the gauge fields e and y do transform in a similar fashion
(and distinctly different from the rest of the field variables).
The first- and the second-order Lagrangians are endowed
with the first-class constraints I, ~ 0, I, ~ 0,p? —m?
0,p- ¥ — mys ~ 0 in the language of Dirac’s prescription
for the classification of constraints. Here 1, and II,, are the
canonical conjugate momenta corresponding to the einbein
field e(7) and the fermionic gauge field x(7), respectively.
There are second-class constraints too in the theory but we
shall not concentrate on them for our present discussion.
The existence of the first-class constraints I, ~ 0 and
p?>—m? ~ 0 on this physical system, generates the following
gauge symmetry transformation J, for the field variables

~
~

of the first-order Lagrangian Lgm) (for the description of
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a spinning relativistic particle):
0g% dg¥u =0,

6ge:f,

0gpu =0,
dgx =0,

= gp;u

(2.3)

6gw5 = 07

where £(7) is an infinitesimal gauge parameter. The pair of

fermionic constraints m, ~ 0 and p- ¢ —ms ~ 0 generate

the following supergauge symmetry transformations d,, for

the bosonic and fermionic field variables of the first-order
Lagrangian Lgm)

6591/}# = i"ﬁp;u
dsge = 2K,

5sgpu =0,
dsgX = ik

sgaju /ﬂ/}/u

(2.4)

0sgts = ikm,

where (7) is an infinitesimal fermionic (i.e. K2 = 0) super-

gauge transformation parameter. The above infinitesimal
transformations are symmetry transformations because

a {5 (7 +m? )}7

(m) _
oLy = dr |2

d [ ;om (m)
— [e£i™]. L™ =
ug L7 = [ (4 muis)] (25)
ot dr L2
It is straightforward to check that, for the generic field vari-
able X', we have (§, —id54) X = 0, 2 with the identifications
§ = ec and k = xe and validity of the on-shell conditions
(le P = 0,8 = XPpu U5 = X, & = ey — Xy, p® =
7p ’(/) m¢5)

The gauge and supergauge symmetry transformations
(2.3) and (2.4) can be combined together and generalized
to the nilpotent BRST symmetry transformations. The
usual trick of the BRST prescription could be exploited
here to express the gauge and supergauge parameters & =
ne and K = nf in terms of the fermionic (¢ = 0) and
bosonic (3?2 # 0) ghost fields and 7. It will be noted that
7 is the spacetime independent anticommuting (i.e. ne +
cn = 0, etc.) parameter which is required to maintain the
bosonic nature of £ (in £ = 1 ¢) and the fermionic nature
of k (in K = nf). The ensuing nilpotent ((sl()o))2 =0)
BRST transformations [29], for the spinning relativistic
particle, are3

0 . 0
51(, )I“ =cpy + ﬁw/u 51(7 )C = *1527 51(, )pu =0,

Sl()o)’(/JM = iBp,, SZ(JO)E = ib, (O)b =0,
O ir2my Ox—ih s — ifm
slso)ﬁ =0, sgo)ﬁ =i, 81(70)’}/ =0. (2.6)

3 We follow here the notation and conventions adopted
in [30,31]. In its full blaze of glory, the true nilpotent (anti-)
BRST transformations d(4yp are the product of an (anticom-
muting) spacetime-independent parameter 7 and the nilpotent
transformations s(,),. It is clear that n commutes with all
the bosonic (even) fields of the theory and anticommutes with
fermionic (odd) fields (i.e. nc+ cn = 0,nc+ en = 0, etc.).
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The above off-shell nilpotent ((si()o))2 = 0) transforma-
tions are the symmetry transformations for the system be-

cause the Lagrangian (which is the generalization of Lgm))

L™ =p-i = se(p? —m?) + 5 (v — st )
+ix (p- ¢ — ¥sm)
1 . = .
+he+ X+ b —ic(e+2x8) - BB (27)
transforms to a total derivative under (2.6), namely
m d |1 1
Orm = & [2(: (07 +m2) + 5 B(p b + muss)
+b(&+28x) — iv3|. (2.8)

A few comments are in order now. First, the first-order
Lagrangian Lgm) has been extended to include the gauge-
fixing term and the Faddeev—Popov ghost terms (con-
structed by the bosonic as well as the fermionic (anti-)
ghost fields) in L( . Second, the bosonic auxiliary field b
and the fermionic auxﬂiary ﬁeld v (withy? = 0,yx+xy =
0,¢y + v¢ = 0, etc.) are the Nakanishi-Lautrup fields.
Third, the fermionic (i.e. ¢ = 0,cc + cc = 0, etc.) anti-
ghost field ¢ and the bosonic (i.e. 32 # 0,38 = (3, etc.)
anti-ghost field § are required in the theory to have a precise
nilpotent BRST symmetry for the system under consid-
eration. Fourth, the above nilpotent transformations (2.6)

are generated by the conserved (Ql()o)

2
(i.e. <Q£0)> = 0) BRST charge Ql()o)

V= 2 (= m?) + B (p-p— )
+b (¢4 26x) + é3% — iyB.

Fifth, the nilpotent ((sg%))2 = 0) anti-BRST symmetry
transformations s(o and corresponding generator Qg;)) can
be computed from (2.6) and (2.9) by the substitutions ¢ <> ¢
and 0 <> . Sixth, the above generators and corresponding
symmetries obey the property of anticommutativity (i.e.

5750 1+ 5D = 0,070 + QY = 0). Finally,
the conservatlon of the BRST charge ng)

by exploiting the equations of motion

= 0) and nilpotent

as given below:

(2.9)

can be proven

pu =0, J.Uu = €py — iXU)/u 772% = XPu> 1/.)5 =Xm
; 1 .
X:Oa b:_ea b:_§(p2_m2)a /6207
B=2icy, é=0, &+2B8x+28x%=0,
A+ 2icB +i(p - — myps) = 0, (2.10)
derived from the BRST invariant Lagrangian L ) of (2.7).

For our further discussion, we deal with the limiting
cases of (2.6) and (2.7) so that we can study the BRST
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transformations corresponding to the gauge transforma-
tions (2.3) and the supergauge transformations (2.4), sep-
arately and independently. It is evident that 3 — 0,5 —
0,7 — 0in (2.6) leads to the nilpotent ((sf()l))2 = 0) BRST

transformations s,()l), corresponding to the gauge transfor-

mations (2.3):

sgl)x# = cpy, sl()l)p# =0, sgl)c =0, sgl)d)# =0,

1)~

Sgl)’(/Jg, =0, s,’c=ib, sl()l)b =0, sgl)x =0,

sWe = ¢, (2.11)

which are the symmetry transformations for the Lagrangian

Lgl)zp-:i:—%e(pQ—mQ)Jr%(1/"@[}_%7’2’5)

1 .
+ix (p - — PYsm) + bé + 5bQ —ice,  (2.12)
obtained from (2.7) under the above specific limits (i.e.
(6,8,7) — 0). In another limiting case (i.e. ¢ = 0,¢ —
0,b — 0) of (2.6), we obtain the following non-nilpotent

((s,()z))2 # 0) BRST transformations, corresponding to the

supergauge transformations (2.4):
3((;2)xu = ﬂ%, ng)p,u =0, 51()2)6 =0,

s = 1Bpu s s =10m. s Yx =16,

81(72)6 = iv, 51(72)7 =0, sl()z)e = 20, (2.13)
that are found to be the symmetry transformations for

the Lagrangian

L,ﬁz):p-:‘v—%e(p2—m2)+%(¢‘1/}_¢51/}5)

Hix (p - — Psm) + X — BB,

derived from (2.7) under the above limits: (¢, ¢,b) — 0. It
will be noted that

(i) the anti-BRST versions of (2.11) and (2.13) can be ob-
tained by the substitutions ¢ +» ¢ and (3 <> (3, respectively;
(ii) in a similar fashion, the generators Ql()m) for 521’2),
can be derived from (2.9) by taking into account the above
limiting cases;

(iii) the equations of motion for the Lagrangians (2.12)
and (2.14) can be derived from (2.10) under the limits
cited above.

We wrap up this section with a couple of comments on
the nilpotency property of the BRST transformations s in
(2.13) that correspond to the supergauge transformations
n (2.4). First, it is straightforward to note that, under
the restriction 3% = 0, one can restore the nilpotency (i.e.
(51(72))2 = 0) for the transformations 31()2). This aspect of
0 can be fulfilled if this bosonic ghost field 3 is taken to
be a composite (i.e. § ~ cic2) of a couple of fermionic
(2 = =0,c1co + cac; = 0) ghost fields ¢; and ¢ [29)].
Second, if this condition (i.e. 32 = 0) is true, it turns out

(2.14)
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(1,

that the two BRST symmetry transformations s 2) really

decouple from each other in the sense that {sgl), ng)} =0.
In such a situation, they can distinctly be separate from

each other as well as from s; in (2.6) (with (51(71’2))2 =
0, {sl()l), 51(72)} = 0) [29]. It is, ultimately, interesting to note
that all the nilpotent symmetry transformations sg) (with

i =0,1,2), for the generic field X' of the system, can be
succinctly expressed in terms of the conserved and nilpotent

charges Q) (with i =0,1,2) as

s 5 = —i[2,Q]y,
r =0b,ab,

(2.15)
XY= x,u7p/ub7 €, ¢, E7X7’77/8a /Ba ¢u7w5’

The =+ signs, present as the subscripts on the above square
brackets, stand for the brackets to be (anti-) commutators
for the generic field X being (fermionic) bosonic in nature.

3 Gauge BRST symmetries:
augmented superfield approach

To derive the nilpotent ((SE;))Z))Q = 0) (anti-) BRST trans-

formations nglz))b (cf. (2.11)) for the gauge (einbein) field
e(7) and the (anti-) ghost fields (¢)c in the superfield for-
malism (where the horizontality condition plays a decisive
role), we begin with a general three (1 4+ 2)-dimensional
supermanifold parametrized by the superspace coordinates
Z = (7,0, 0) where 7 is an even (bosonic) coordinate and ¢
and 0 are the two odd (Grassmannian) coordinates (with
6% = 6% = 0,00 + 00 = 0). On this supermanifold, one can
define a 1-form supervector superfield V = dZ(A) with
A(1,0,0) = (E(1,0,0),F(1,0,0), F(7,0,0)) as the compo-
nent multiplet superfields. The superfields E, F, F' can be
expanded in terms of the basic fields (e, ¢, ¢) and auxil-
iary field (b) along with some extra secondary fields (i.e.
f,f.B,g,7,5,35,b), as given below (see, e.g., [11,12,27]):

E(1,0,0) = e(1) + 0f(1) +0f(7) +100B(1),
F(1,0,0) = c(7) +i0b(1) +ifg(7) + 00s(7),

F(1,0,0) = &(1) +10g(7) +10b(7) +i005(7).  (3.1)
It is straightforward to note that the local fields f(7),
f(r), c(r), e(r), s(1), 8(7) on the RHS are fermionic (anti-
commuting) in nature and the bosonic (commuting) local
fields in (3.1) are e(7), B(1), g(7), g(7), b(T), b(7). It is evi-
dent that, in the above expansion, the bosonic and fermionic
degrees of freedom match. This requirement is essential for
the validity and sanctity of any arbitrary supersymmetric
theory in the superfield formulation. In fact, all the sec-
ondary fields will be expressed in terms of basic fields due
to the restrictions emerging from the application of the
horizontality condition (see, e.g., [11,12,27])

dV =dA=0, d=dro.,

A =dre(r), d*=0,(3.2)
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where the super exterior derivative d and the super con-
nection 1-form V are defined as

d = drd, + d9dy + dAdy,

V = drE(r,0,0) + dOF(r,6,0) + dOF(7,0,0).

(3.3)

It will be noted that super 1-form connection V is overall
bosonic in nature because of the fact that the superfields
E and (F, F) are bosonic (E? # 0) and fermionic (F? =
F? = 0), respectively. They have been combined together
with dr and (df,df) in such a fashion that V becomes
bosonic. We expand dV, present in the LHS of (3.2), a;

dV = (dr A d0)(8,F — 89E) — (df A dO) (9 F)
+(dr A dB) (O, F — 04E) (3.4)
—(d6 A dB)(8gF + 95 F) — (df A dO)(95F).

Ultimately, the application of the horizontality condition
(dV = dA = 0) yields

It may be emphasized that the gauge (einbein) field e(7)
is a scalar potential depending only on a single variable
parameter 7. This is why the curvature is zero (i.e. dA = 0)
because dr A dr = 0*. The insertion of all the above values
(cf. (3.5)) in the expansion (3.1) leads to the derivation of
the (anti-) BRST symmetry transformations for the gauge
and (anti-) ghost fields of the theory. This statement can
be expressed, in an explicit form, as given below:

E(7,0,0) = e(t) + 0¢(1) + 0&(1)) + 1600b(7),
) i0b(7),
(T) +i0b(7). (3.6)

In addition, this exercise provides the physical interpreta-
tion for the (anti-) BRST charges Qgigb as the generators (cf.
(2.15)) of translations (i.e. Limg_,(0/96), Limg_,¢(3/00))
along the Grassmannian directions of the supermanifold.
Both these observations can be succinctly expressed, in a
combined way, by re-writing the super expansion (3.1) as®

F(r,0.9)

4 Tt is interesting to point out that, unlike the above case,
for the 1-form (A = dz*A,) Abelian gauge theory, where the
gauge field is a vector potential A, (x), the 2-form curvature
dA = L (dz" Adz”) F,, is not equal to zero and it defines
the field strength tensor Fj,, = 0,A, — 0, A, for the Abelian
gauge theory. For the 1-form non-Abelian gauge theory, the
Maurer—Cartan equation F' = dA + A A A defines the 2-form
F which, in turn, leads to the derivation of the corresponding
group valued field strength tensor Fj,, .

5 It is worthwhile to note that the anti-BRST transformations

s<1b) for the system, described by the Lagrangian in (2.12),
are s(b)xu = Cpu, s(b)c =0, s(lb) = O,séb)c = (1)b =
0, s(t)x =0, s(lb)zLV =0, 3(1)1/)“ = 0,8((12)6 = ¢. The key point,

that should be emphasized, is the minus sign in sfllb)c = —ib.
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E(1,0,8) = e(r) + 6 (sf;b) (r )) +0 (sb e(r ))
200 (45200,

F(r,0,6) = ¢(r) + 0 (Si?C(T)) +0 (sg%(f))
8 (5050).

F(r,0,0) = e(r) + 0 (sy)e(r)) + 8 (se())

+00 (51(71)5((12)6(7')) .

It should be noted that the third and fourth terms of the
expansion for F' and the second and fourth terms of the

(3.7)

expansion for F are zero because (sgl)c =0, st(lt)é =0).
Let us concentrate on the derivation of the nilpotent

: 1
(e (s(a))? =
tions sgagb for the Lorentz scalar fields x(7),¥5(7) and the

Lorentz vector target fields (x,(7),¥u(7),p.(7)). In the
derivation of the nilpotent transformations for these fields,
under the framework of augmented superfield formalism, it
is the invariance of the conserved quantities on the (super)
manifolds that plays a key role. However, at times, one has
to tap the inputs from the super expansions (3.6), derived
after the application of the horizontality condition, for the
precise derivations of the nilpotent transformations. Thus,
to be very precise, it is the interplay of the horizontality
condition and the invariance of the conserved charges that
enables us to derive the nilpotent (anti-) BRST transforma-
tions. To justify this assertion, first of all, we start off with
the super expansion of the superfields (X*, P,)(r,0,0) ),
corresponding to the ordinary target variables (z*,p,)(7)
(that specify the Minkowski cotangent manifold and are

present in the first-order Lagrangian Lgm))

0) (anti-) BRST symmetry transforma-

, as

X, (T,0, 9_) =z,(7)+ QR#(T) + Q_RH(T) + i@éSu(T),

P,(r,0,0) =p,(T) + GF’#(T) + gFH(T) + i99_T#(T).
(3.8)

It is evident that, in the limit (6, 67) — 0, we get back the
canonically conjugate target space variables (z#(7), pu(7))

of the first-order Lagrangian L(m) in (2.1). Furthermore,
the number of bosonic fields (.Z‘M,p,“ Sy, T,,) do match with
the fermionic fields (F),, F,, R,, R,,) so that the above ex-
pansion becomes consistent with the basic tenets of su-
persymmetry. All the component fields on the RHS of the
expansion (3.8) are functions of the monotonically increas-
ing parameter 7 of the world-line. As emphasized in Sect. 2,
three most decisive features of the free relativistic particle
are
(i) pu =0,
(i) p- & — mbs = 0, and
(iii) p? —m? = 0.

To be very specific, it can be seen that the conserved
gauge charge Qg = % (p2 — m2) couples to the “gauge”

(einbein) field e(7) in the Lagrangian Lgm) to maintain the
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local gauge invariance® under the transformations (2.3).
For the BRST invariant Lagrangian (2.12), the same kind
of coupling exists for the local BRST invariance to be main-
tained in the theory. The invariance of the mass-shell con-
dition (p? —m? = 0) (i.e. a conserved and gauge invariant
quantity) as well as the conservation of the gauge invariant
momenta (p, = 0) on the (super) manifolds, namely

P,(1,0,0)P"(1,0,0) — m?* = p,(7)p" (1) — m?,
p#(T707§) :]j#(’r)7 (39)
imply the following restrictions:
Fu(r)= FM(T) =Tu(r) =0, PM(T707§) = pu(7). (3.10)

In other words, the invariance of the mass-shell con-
dition as well as the conserved momenta on the (super)
manifolds enforces P, (7,0,0) to be independent of the
Grassmannian variables # and 6. To be consistent with
our earlier interpretations for the (anti-) BRST charges,
in the language of translation generators along the Grass-
mannian directions (0)# of the supermanifold, it can be
seen that the above equation can be re-expressed as

Pu(7,0,0) = pu(r) +0 (s pu(7)) + 0 (4 pu(7))

+60 (55583 (7)) (3.11)

The above equation, vis-a-vis (3.10), makes it clear that

Sl()l)pu(T) =0 and s((l?pu(r) =0.

Before we shall derive the nilpotent (anti-) BRST trans-
formations for x,,(7), it is useful to compute these transfor-
mations for the fermionic gauge field x(7) and other fields
5 (7) as well as ¢, (7). With this end in mind, let us have
the super expansions for the superfields, corresponding to
these fields, as follows:

K(7,0,0) = x(7) + 0by () + 0by (1) + 00 f1(7),

Ws5(7,0,0) = ¥5(7) + 0Bs(T )+é 5(7) + 00 f5(7),

U, (7,0,0) = () + 0, (1) + 0b,(T) + 00 £, (7).
(3.12)

It will be noted that, in the limit (§,0) — 0,

we do obtain the usual local fields x(7),¥s5(7) and
¥, (1) and the fermionic (x, ¥s, ¥y, fu, f1, f5) and bosonic
(b1, b1, Bs, B5,b b ) degrees of freedom do match in the
above expansion. Let us focus on the conserved quantities

X = 0,15 = xm = 0,4, = Xp,+ xPu = 0 (cf. (2.10)). The

6 Exactly the same kind of gauge coupling exists between
the Dirac fields for the fermions (electrons, positrons, quarks,
etc.) and the gauge boson field of the interacting 1-form (non-)
Abelian gauge theories where the matter conserved current
Ju = Py, constructed by the Dirac fields, couples to the
gauge field A, of the (non-) Abelian gauge theories to maintain
the local gauge invariance (see, e.g., [32]).
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invariance of x(7) = 0 on the (super) manifolds” leads to
the following consequences:

K(1,0,0)=x(1)=0 = b= b=/f1=0.(313)

One of the solutions is by = by = f; = C where C'isa 7-
independent constant. Geometrically, this amounts to the
shift of the superfield K (7, 6, §) along the 6- and f-directions
by a constant value C'. One can choose the 6 and 6 axes
on the supermanifold in such a manner that this constant
C is zero. Thus, ultimately, we obtain b, = by = f; = 0.
Interpreted in the light of (3.6), (3.7) and (3.11), this shows

that sglgbx 0 (i.e. K(7,0,0) = x(7)). As a side remark,
it is worthwhile to mention that the above explicit equality
(3.13) can be re-expressed as the equality of the conserved
quantities only. In other words, the restriction K (7,0, ) =
x(7), directly implies that by = by = f1 = 0. For the
(non-) Abelian gauge theories, such kind of equality has
been taken into account [24-26] where only the expression
for the conserved quantity has been equated on the (super)
manifolds. In view of the above, it can be seen that the
following invariances of the conserved quantities (cf. (2.10)
for details) on the (super) manifolds:

W5(1,0,0) — K(7,0,0)m = 5(1) — x(1)m,
¢M(T, 0,0) — K(1,0,0)P,(7,0,0)
= (1) = x()pu(7), (3.14)

imply the following restrictions for the expansion in (3.12),
namely
Bs=Bs=f;=0,

b,=b,=f,=0. (3.15)

In the above derivation, we have exploited the results of
(3.10) (i.e. P,(7,0,0) = p,(7)) and (3.13) (i.e. K(7,0,0) =
X(7))- Insertions of (3.15) into (3.12) imply that s(l)b1/)5 =0

(ie. s(r,0,0) = ¢s5(r)) and s} 1, = 0 (ie. ,(7,0,0) =
¥u(7)). It is worthwhile to empha51ze that the above so-
lutions are one set of the simplest solutions which are of
interest to us. A more general solution (than the above)
might exist.

Now the stage is set for the derivation of the nilpotent
(anti-) BRST transformations for the target space coordi-
nate variable z,(7). One of the most important relations,
that plays a pivotal role in the derivation of the mass-
shell condition (p? — m? = 0) for the Lagrangian L™,
is ,(7) = e(7)pu(T) —ix®,. This is due to the fact that

(aLém)/ae) = 0 implies that e*m? = (i, +ix1/)u)2 and
Py = (8L§m)/6ds“) = e (&, +ix¥,). A simple way to

derive the (anti-) BRST transformations for the coordi-
nate target variable z,(7) is to require the invariance of
this central relation on the (super) manifolds, as

" This condition, in a more sophisticated language, is just
the gauge choice for the system.
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X(T@H) (709) (70,0_)
HEK(7,0,0)¥,(T,0,0) (3.16)
=&, (1) — e(T)pu(7) +ix(7)u(7),

where E(7,0, 0) is the expansion in (3.6) which has been ob-
tained after the application of the horizontality condition.
Exploiting the relations P,(7,6,6) = p,(7) from (3.10)
and K(1,0,0) = x(7), it can be seen that the following
relations emerge from (3.16):

R=c¢p,, R,=¢pu, S.="bp,. (3.17)

At this crucial stage, we summon one of the most de-
cisive physical insights into the characteristic features of a
free spinning relativistic particle which states that there is
no action of any kind of force (i.e. p,,(7) = 0) on the free mo-
tion of the particle. Having taken into account this decisive

input, we obtain from (3.17), the following relations:

R, = 0. R, = - (cp,),

w= Or = aT(pr), (3.18)
which lead to
Ry(7) = epu, Ru(r) =cpu, Su(r)=0bp,. (3.19)

The insertions of these values into the expansion (3.8)
lead to the derivation of the nilpotent (anti-) BRST

1)

transformations (s(a)b) on the target space coordinate

field x,,(7):

Xu(r.0.0) = 2,(7) 10 (s43)2(7) + 6 (V,(7))

+00 (55583 0, (7) ) (3.20)

In our recent papers [24-26] on interacting 1-form (non-)
Abelian gauge theories, it has been shown that there is a
beautiful consistency and complementarity between the
horizontality condition and the requirement of the invari-
ance of conserved matter (super) currents on the (super)
manifolds. The former restriction leads to the derivation of
nilpotent symmetries for the gauge and (anti-) ghost fields.
The latter restriction yields such kind of transformations
for the matter fields. For the case of the free spinning rel-
ativistic particle, it can be seen that the invariance of the
gauge invariant and conserved quantities on the (super)
manifolds, leads to the derivation of the transformations
for the target field variables. To corroborate this assertion,
we observe that the conserved and gauge invariant charge
Qg = +(p* — m?) is the analogue of the conserved mat-
ter current of the 1-form interacting (non-) Abelian gauge
theory. Since the expansion for P,(z.0,0) is trivial (cf.
(3.10)), we have to Te-express the mass-shell condition (i.e.
e2(p* —m?) = (&, +ixy,)? — e*m?) in the language of the
superfields (3.6) and ¥, (7,0, 0) = ¥, (1), K(7,0,0) = x(7).
Thus, the invariance of the conserved (super) charges on
the (super) manifolds is
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(X, (7,0,0) +iK(1,0,0),(
x[X*"(7,0,0) +1iK (1
—m?E(r,0,0)E(1,0,0)

= [2u(7) + X (7)Y (7)][2"

—erQ.

7,0,0)]
,0,0)0"(7,0,0)]

(1) + ix(r)eH(7)]
(3.21)

The equality of the appropriate terms from the LHS
and RHS leads to

(2, +ixy,) K=m?eé, (i, +ixv,) R* = mZeé,

(2, +ixt,) S* = m2eb, R, = m?é. (3.22)

With the help of the key relation &, +ixy, = ep,, we

obtain the expressions for R#,R#,S’u, exactly the same
as the ones given in (3.17) for the mass-shell condition
p?—m? = 0 to be valid. Exploiting the no force (i.e. p, = 0)
criterion on the free motion of a spinning relativistic par-
ticle, we obtain the expressions for R, Rm S, in exactly
the same form as given in (3.19). The insertion of these
values in (3.8) leads to the same expansion as given in
(3.20). This provides the geometrical interpretation for
the (anti-) BRST charges as the translational generators.
It should be noted that the restrictions in (3.16) and
(3.21) are intertwined. However, the latter is more phys-
ical because it states the invariance of the conserved and
gauge invariant mass-shell condition explicitly. As a side
remark, we would like to comment on the other conserved
quantity p - ¥ — maps = 0. It is straightforward to check
that this conserved quantity is automatically satisfied on
the (super) manifolds due to the fact that Ws(7,6,0) =
V5(7), W, (1,0,0) = ¥, (1), Pu(7,0,0) = p,(7). In fact,
the results ¥5(7,0,60) = ¥5(7 ) N(T 0,0) = ¢, () can be
obtained from this very conserved quantity if we follow
the same trick as we have exploited, in the above, for the
conserved and gauge invariant quantity p?> — m? = 0 for

the derivation of sggb for x,, (7).

4 Supergauge BRST symmetries:
augmented superfield formalism

We derive here the nilpotent ((s E %b) = 0) (anti-) BRST
symmetry transformations sga;b (cf. (2.13)), corresponding

to the supergauge transformations in (2.4), in the frame-
work of the augmented superfield formalism. The crucial
assumption here is the condition 42 = 0 which can be satis-
fied if and only if the bosonic (anti-) ghost fields (3)3 were
made up of two fermionic ghost fields. In contrast to the su-
per 1-form bosonic connection V', quoted in (3.3), we define

here a fermionic super 1-form connection F as follows:
F =dzZ(F)
=drK(r,0,0) +id0B(r,0,0) + iddB(t,0,0),

(4.1)
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where the supermultiplet

F(7,0,0) = (K(1,0,0),iB(t,0,0),iB(t,0,0))

has three superfields and the fermionic super gauge field
K(7,0,0) has an expansion as given in (3.12). The bosonic

superfields B(7,6,0) and B(t,6,0) have the following ex-
pansions:
B(1,0,0) = B(1) +10f2(7) 4+ 10 f3(7) + i00by(7),
B(7,0,0) = B(1) +i0f3(7) +i0 fo(T) + i00by (1),

(4.2)

which yield the bosonic (anti-) ghost fields (3)3 in the
limit (6, 0) — 0 and the bosonic (8, 3, bz, by) and fermionic
(fa, f2, f3, f3) degrees of freedom do match. The require-
ment of the horizontality condition (with the super exterior
derivative d defined in (3.3)):

dF =dF =0, d=dro,,

F =drx(1), d*=0,(4.3)

leads to the derivation of the secondary fields in terms of
the basic fields as well as the auxiliary fields. In fact, the
explicit expression for dF is

dF = (dr A d8)(i0,B — 9y K) — i(df A dB)(9pB)
+(dr A dB)(i0,B — 05K)

—i(d9 A dé)(aelg + 6,;8) — i(dé A dé)(aglg)

(4.4)

The application of the horizontality condition dF
dF = 0 leads to the following relations:

9B =0,
OpK =

0gB =0,
i0, B, O K

658 + 0B =0,

=0, B. (4.5)

The first two relations, in the above, produce by = by =
0, f3 = f3 = 0. The thlrd one leads to f2+f2 = 0. Choosing
fg = ~ implies that fo = —y and the bosonic superfields
B and B become chiral and anti-chiral superfields, respec-
tively, with the following expansions:

—i6v=5(r) — 0 (5 8(r))
= B(r) +i67 = B(r) +0 (57 B(r))

B(r,0) = p(r)

B(r,0) (4.6)

It will be noted that the Nakanishi—Lautrup fermionic
(72 = 0) auxiliary field v(7) is not a basic dynamical field
variable of the theory (cf. (2.14)). The above equations
establish that ng)ﬂ(T) = 0 and s(ﬁ)/@(ﬂ = 0. Exploiting
the expressions for B(7, #) and B(, 0) (cf. (4.6)) in the last
two relations of (4.5), we obtain the following values for

the component local secondary fields of the expansion for
K(7,0,0) in (3.12):

bi(7) =iB(r), bi(r) =iB(r), filr) = —(r). (4.7)

The insertions of the above values in the expansion of
K(1,0,0) yields
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K(7.6,0) = x(r) +0 (s&)x(r) +6 (s x(7))

+00 (55755 (7)) - (4.8)

It should be pointed out that the expressions in (4.6) for
the bosonic superfields can also be Written 1n an exactly the

same form as (4.8) as 81()2)5( ) =0and 5 ﬂ( ) = 0. There
is only one caveat, however. This has to do with the (—) sign
in the expansion of B(7, §)®. We shall dwell on it, in detail, in
the conclusions part, Sect. 5, of our present paper. It is clear
that this exercise provides the geometrical interpretation

for the (anti-) BRST charges nggb as the generators (cf.

(2.15)) of translations (i.e. Limg_,(9/00), Limg_,(9/90))

along the Grassmannian directions (6)6 of the three (142)-
dimensional supermanifold.

Let us focus on the derivation of the nilpotent

(2

transformations S(a)b for the target field variables

(2, (1), pu(7),¥u(7)) and the Lorentz scalar fermionic
field ¥5(7) in the framework of augmented superfield for-
malism. Here, once again, the interplay of the horizontality
condition and the invariance of the conserved quantities
on the (super) manifolds do play a very important and
decisive roles. To see it clearly, let us first concentrate on
the invariance of the conserved quantities (given in (3.14))
on the (super) manifolds. The explicit substitutions of
super expansions yield the following relationships:

(5 + 085 + OB + 00 f5)
—(x +i08 +108 — 607)m
=95 — xm,
(d’u + 0_.;@ + %M + 90_fu)
—(x +i08 +i08 — 064)p,,
— g, —

XDy (4.9)

where we have exploited the expansions of ¥, (7, 6, 9) and
W5(7,0,0) given in (3.12) and have used the expansion of

K(7,0,0) from (4.8) that has been obtained after the ap-
plication of the horizontality condition. It is evident that

the following relations emerge between the secondary com-
ponent fields and basic fields:

8 It will be noted that the explicit form of the antl BRST
transformations s for the system are sab Ty = ﬂw#, ab pu =
0, Sﬁ)ﬂ = O,S(Q)ﬂ = iy, sy = 0,50 v = iBpu, sty x =
1ﬁ, ab e = 2Bx. The key point that should be emphasized is
the fact that, the bosonic nature of the (anti-) ghost fields
+i7)
and 5;,2)5( +iy) for the symmetry of the Lagranglan to be

(B)f does not allow for a change of sign between 5 ﬁ (=

maintained. This situation is totally opposite to the case of séi))b
(cf. (2.11)) where the (anti-) ghost fields are fermionic in nature,
and, that is why, the change of sign in s( )c = —ib, sgl)é =1ib
is required.
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Bs = im = 8, (ifm), = iBm = 0, (iBm), (4.10)
f5 = —ym= —0- (vm), 7.b = i/épu =0 (in/L)a
i)u = iﬂ.pu = ar(iﬁpu)7 fu = —87(’}/])”),

where, in the latter set of entries, we have used the re-
quirement of the free motion (p, = 0) of a free spinning
relativistic particle. Ultimately, the insertions of the above
values in the expansions (3.12), yields the following expan-

_;Ypu =

sions in terms of sgng (cf. (2.13)):

Ws(7,6,0) = Us(r) + 0 (53 (7)) + 0 (47 05(7))
+66 (sb sab )
W, (7,0,0) = (1) + 0 (<2> )+9‘(sb b(r ))

+99‘( @@y (7 )) (4.11)

The above expansions produce the same geometrical inter—

pretations for the symmetries s§2; , and the generators Q ()b

(i.e. the translational generators along the Grassmannian
directions) as the conclusions drawn for the expansion in
(4.8) for K(1,0,0).

Having obtained the super expansions of superfields (i.e.
K,B,B,¥,Ws) in terms of the local 7-dependent ordinary
basic fields in (4.6), (4.8) and (4.11), the stage is now set for
the derivation of the nilpotent symmetry transformations
for the einbein field e(7) and the canonically conjugate
target space field variables x,,(7) and pf( 7). It is clear that
P = 0 and the mass-shell condition p= — m? =0 are
(i) supergauge invariant (i.e. d59p, = 0), and
(ii) conserved quantities. Thus, their invariance on the (su-
per) manifolds, once again, leads to the same conclusions
as illustrated in (3.9) and (3.10). As a consequence, we

have SEingu = 0. Now, the central problem is to obtain

the nilpotent transformations for e(7) and z, (7). In this
connection, it turns out that

(1) the intertwined relations given in (3.16) and (3.21), and
(ii) the conserved quantity p - ¢ — miys = 0 (expressed
in terms of p, = e~ (&, + ix¥,) so that it becomes & -
1 — mews = 0), emerge to help in the final computation.
Exploiting the explicit expressions for the expansions of
v, (t,0,0) and ¥5(7,0,0) given in (4.11) and inserting the
values of X, (7,0,0) and E(t,0,0) from (3.8) and (3.1) in
the following invariance of the conserved quantity on the
(super) manifolds:

X W —mEWUs =i - — mes, (4.12)

we obtain the following relationships:
R —mfis = iefm? —iB(i - p),
Ry —mfips = iefm? —iB(i - p),
i(S ) +iB(R- p) ~i8 (R-p) +ifBm’
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—iffm? —iBs

=y (&-p) — eym?. (4.13)

Similarly, tapping the potential of the cute relationship
in (3.16) (which is finally intertwined with the invariance of
the conserved quantity in (3.21)), we obtain the following
connections among the component secondary local fields
and the basic local fields:

- fp;t = 5% - ﬂXp;u
Ru - fpu = B% - BXp/u (4'14)
i, — Bp = Vb + (38 — BB)py + ixvpus

where the explicit expansions from (3.1) (for E), (3.8) (for
X,), (4.8) (for K) and (4.11) (for ¥,) have been used.

Solution to the above equatlons on the on-shell (i.e. ¢H =

XPus D = 0, & = epy —ixthy, p? —m? = 0,p-h—mip5 = 0,
etc.) are as follows:

[f=28x. f=2Bx, Ru=pBv,,
S, =Y + BBpu, B =266+ 2yx.

As aside remark, it is interesting to point out that, even
from a single relationship in (4.14), some of the above values

Ru = me
(4.15)

could be guessed. For instance, the relationship Ru —fou =
ﬂﬁ/)# — BXPp, can be re-expressed as R, — fp,, = 0-(B,.) —
5@/}# — Bxpy- Exploiting the on-shell condition 1@ = XPy in
the above, it can be seen that Rﬂffp# = 0-(BYu) —26xpp-
This last relation gives a glimpse of R, = B, and f —72ﬁx
In exactly the same manner, it can be seen that R,
ﬁd}# and f = 2f8x. With these values, other expressions
of (4.15) follow, which ultimately, satlsfy all the relations
derived in (4.13) and (4.14). Insertions of the above values
in the expressions for superfield E(7,6,0) in (3.1) and the
superfield X, (7,0,0) in (3.8) lead to the following:

e(r) + 0 (55 e(r) + 0 (st7e(r))
(7).

Xu(7,8,60) = 2,,(r) + 0 (s5)0,(7) + 8 (517 2,(7))
60 (755 ().

The above equation, once again, establishes the fact that
the nilpotent (anti-) BRST generators Q%b (and corre-

sponding symmetry transformations sgi;b) are the transla-

B(r,0,0) =

+60 (sb s(?

(4.16)

tional generators along the Grassmannian directions ()6
of the supermanifolds.

5 Conclusions

In our present endeavour, we have exploited, in an elegant
way, the key ideas of the augmented superfield formalism
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to derive two sets of anticommuting (i.e. {sgigb,s%b} =

0) and nilpotent ((3(1’2))2 = 0) (anti-) BRST symmetry

(a)b
transformations s(a’)b) for all the field variables, present

(1,2

in the Lagrangian description of a free massive spinning
relativistic particle. The theoretical arsenal of
(i) the horizontality condition, and
(ii) the invariance of the conserved quantities on the (su-
per) manifolds, have played very decisive roles in the above
derivations. One of the central new features of our present
investigation is the application of the augmented superfield
formulation to a supersymmetric system where the bosonic
() and fermionic (€)c (anti-) ghost fields are present to-
gether in the (anti-) BRST invariant Lagrangian describing
the free motion (p, = 0) of the super particle. Of course,
for the system under consideration, the reparametrization
symmetry invariance and the gauge symmetry invariance
are also present. All these symmetries are inter-related.

Even though the pair of bosonic (anti-) ghost fields (3)3
are commutative in nature (i.e. 66 = 3, X = X3, X =
23 for the generic field X' = 2, pu, Y, ¥s, €, X, ¢, ¢, b,7),
they are taken to be nilpotent of order two (3% = 0, 3% = 0)
with the assumption that they are made up of a pair of
fermionic (anti-) ghost fields (i.e. B ~ cicz, B ~ €162, 3 =
c% = 0,c1¢2 + cac; = 0, ete.). Such an assumption is es-
sential for a couple of advantageous reasons. First, the
(anti-) BRST transformations (3.13) (corresponding to
the supergauge symmetry transformations (2.4)) become

nilpotent (i.e. (sg?)b)Q = 0) under the above assumption.

This can be explicitly checked for (Sgigb)%cu(r) =0 and
(523,})26(7) = 0 where the conditions 42 = 32 = 0 and

0, (B)? = 0,(B)? = 0 are required for the proof of an ex-
plicit nilpotency. Second, this assumption also allows sgigb
to decouple from the nilpotent transformations in (2.6)
(where, in some sense, they are hidden) and the nilpotent
transformations (2.11) so that they could become com-
pletely separate and independent. At this stage, it is worth
emphasizing that there is no such kind of restriction (i.e.
32 # 0) on the bosonic ghost field 3 in the nilpotent trans-
formations listed in (2.6).

In our earlier works [23-27], the horizontality condition
was augmented to include the invariance of the conserved
matter currents/charges on the (super) manifolds. In our
present endeavour, the augmented superfield formalism has
been extended to include the invariance of any kind of
conserved quantities on the (super) manifolds and still
(i) there is a mutual consistency and complementarity be-
tween the two above types of restrictions;

(ii) the geometrical interpretations for the nilpotent (anti-)

BRST charges Qg’)i), as the translational generators

(Limg_,(0/00)) Limg_, ¢(0/00) along the (#)d-directions
of the (D + 2)-dimensional supermanifold, remains intact;

(iii) the nilpotency of the (anti-) BRST charges Qgii)

is encoded in a couple of successive translations (i.e.
(0/00)* = (9/90)?> = 0) along either of the two Grass-

mannian directions of the supermanifold;

523

(iv) the anticommutativity of the nilpotent (anti-) BRST

charges QE}I;) (and the transformations they gener-

ate) is captured in the relationship (8/06)(9/00) +
(0/00)(0/00) = 0. Thus, our present extension of ear-
lier works [23-27] is a very natural generalization of the
horizontality condition where the beauty of the geometrical
interpretations is not spoiled in any way.

We dwell a bit on the negative sign in (4.6) for the ex-
pansion of the chiral superfield B(7, 8). In fact, the bosonic

ghost term 34 in (2.7) (or (2.14)) remains invariant under
8 — +5,8 — +£5. We have taken the (4) sign for our
description of the anti-BRST transformations 553)). How-
ever, one could choose 3 — —f3,3 — —f3 equally well. In
that case, the negative sign in the expansion of (4.6) dis-
appears. However, under the latter choice, the beautiful
expansions of the superfields E(7,6,6) and X, (7,6,6) in
(4.16) get disturbed and some minus signs crop up in the
expansion. This is why we have opted for the (4) sign in
(8 — £06,8 — £0) and all the transformations, listed in
the whole body of the present text, are consistent with
it. Geometrically, it seems that the translation of the an-
tichiral superfield B(7,f) along the (+0)-direction of the
supermanifold produces the BRST 51(72) transformation for
the anti-ghost field 3. However, the anti-BRST transforma-

tion sffb) for the ghost field (§ is produced by the translation
of the chiral superfield B(r, §) along the (—0)-direction of
the supermanifold. This kind of discrepancy appears, per-
haps, because of the peculiar behaviour of these bosonic
(anti-) ghost fields which are commutative in nature but are
restricted to be nilpotent of order two (i.e. 82 = 0, 3% = 0).

In our present investigation, we have not dwelt on the

derivation of the beautiful nilpotent symmetries 5523 , (cf.

(2.6)) in the framework of the augmented superfield for-
malism because we cannot add the bosonic and fermionic
1-form super connections V' and F (defined in (3.3) and
(4.1)) together. However, we strongly believe that if

(i) the action with Lagrangian (2.7) is written in terms of
the superfields, and

(ii) the BRST symmetry transformations (2.6) are ex-
pressed in terms of the superfield too, we shall be able
to derive these beautiful nilpotent symmetry transforma-
tions (i.e. without any restrictions) in the framework of
augmented superfield approach to BRST formalism. We
would like to lay stress on the fact that the nilpotent sym-
metry transformations in (2.6) are beautiful because there
are no restrictions (i.e. 3% # 0, 3% # 0) and no other pecu-
liarities (like its being a composite of two fermions, etc.)
are associated with the bosonic (anti-) ghost fields (3)3.
Furthermore, our approach could be extended to be applied
to some more complicated and interesting field theoretic
supersymmetric systems so that the ideas proposed in our
present endeavour could be put on a firmer footing. These
are some of the issues that are under investigation and
we shall report these results in our forthcoming publica-
tions [33].
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